Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 44(7): 3650-3662, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28425119

RESUMO

PURPOSE: Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors that quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, for example, of trabecular bone in medical physics. METHODS: We analyze the orientation-biased Boolean model, a versatile stochastic model that represents microstructures as overlapping grains with an orientation bias towards a preferred direction. This model is an extension of the isotropic Boolean model, which has been shown to truthfully reproduce multi-functional properties of isotropic porous media. We explain the close relationship between the concept of intersections with test lines to the elaborate mathematical theory of queues, and how explicit results from the latter can be directly applied to characterize microstructures. RESULTS: In this series of two papers, we provide analytic formulas for the anisotropic Boolean model and demonstrate often overlooked conceptual shortcomings of this approach. Queuing theory is used to derive simple and illustrative formulas for the mean intercept length. It separates into an intensity-dependent and an orientation-dependent factor. The global average of the mean intercept length can be expressed by local characteristics of a single grain alone. CONCLUSIONS: We thus identify which shape information about the random process the mean intercept length contains. The connection between global and local quantities helps to interpret observations and provides insights into the possibilities and limitations of the analysis. In the second paper of this series, we discuss, based on the findings in this paper, short-comings of the mean intercept analysis for (bone-)microstructure characterization. We will suggest alternative and better defined sensitive anisotropy measures from integral geometry.


Assuntos
Anisotropia , Osso e Ossos/diagnóstico por imagem , Humanos , Porosidade
2.
Med Phys ; 44(7): 3663-3675, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28425122

RESUMO

PURPOSE: Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors to quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, e.g., of trabecular bone in medical physics. Yet, in this series of two papers we demonstrate that it has conceptual shortcomings that limit the validity of its results. METHODS: We test the validity of general assumptions regarding the properties of the mean-intercept length tensor using analytical formulas for the mean-intercept lengths in anisotropic Boolean models (derived in part I of this series), augmented by numerical simulations. We discuss in detail the functional form of the mean intercept length as a function of the test line orientations. RESULTS: As the most prominent result, we find that, at least for the example of overlapping grains modeling porous media, the polar plot of the mean intercept length is in general not an ellipse and hence not represented by a second-rank tensor. This is in stark contrast to the common understanding that for a large collection of grains the mean intercept length figure averages to an ellipse. The standard mean intercept length tensor defined by a least-square fit of an ellipse is based on a model mismatch, which causes an intrinsic lack of accuracy. CONCLUSIONS: Our analysis reveals several shortcomings of the mean intercept length tensor analysis that pose conceptual problems and limitations on the information content of this commonly used analysis method. We suggest the Minkowski tensors from integral geometry as alternative sensitive measures of anisotropy. The Minkowski tensors allow for a robust, comprehensive, and systematic approach to quantify various aspects of structural anisotropy. We show the Minkowski tensors to be more sensitive, in the sense, that they can quantify the remnant anisotropy of structures not captured by the mean intercept length analysis. If applied to porous tissue and microstructures, this improved structure characterization can yield new insights into the relationships between geometry and material properties.


Assuntos
Anisotropia , Osso Esponjoso/diagnóstico por imagem , Humanos , Porosidade
3.
J Phys Condens Matter ; 28(24): 244003, 2016 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-27115987

RESUMO

Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.

4.
Phys Rev Lett ; 116(6): 060601, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26918973

RESUMO

We investigate the emergence of subdiffusive transport by obstruction in continuum models for molecular crowding. While the underlying percolation transition for the accessible space displays universal behavior, the dynamic properties depend in a subtle nonuniversal way on the transport through narrow channels. At the same time, the different universality classes are robust with respect to introducing correlations in the obstacle matrix as we demonstrate for quenched hard-sphere liquids as underlying structures. Our results confirm that the microscopic dynamics can dominate the relaxational behavior even at long times, in striking contrast to glassy dynamics.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26565348

RESUMO

We study the relation of permeability and morphology for porous structures composed of randomly placed overlapping circular or elliptical grains, so-called Boolean models. Microfluidic experiments and lattice Boltzmann simulations allow us to evaluate a power-law relation between the Euler characteristic of the conducting phase and its permeability. Moreover, this relation is so far only directly applicable to structures composed of overlapping grains where the grain density is known a priori. We develop a generalization to arbitrary structures modeled by Boolean models and characterized by Minkowski functionals. This generalization works well for the permeability of the void phase in systems with overlapping grains, but systematic deviations are found if the grain phase is transporting the fluid. In the latter case our analysis reveals a significant dependence on the spatial discretization of the porous structure, in particular the occurrence of single isolated pixels. To link the results to percolation theory we performed Monte Carlo simulations of the Euler characteristic of the open cluster, which reveals different regimes of applicability for our permeability-morphology relations close to and far away from the percolation threshold.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Permeabilidade , Porosidade
6.
Proc Natl Acad Sci U S A ; 112(42): 12911-6, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438839

RESUMO

The wing scales of the Green Hairstreak butterfly Callophrys rubi consist of crystalline domains with sizes of a few micrometers, which exhibit a congenitally handed porous chitin microstructure identified as the chiral triply periodic single-gyroid structure. Here, the chirality and crystallographic texture of these domains are investigated by means of electron tomography. The tomograms unambiguously reveal the coexistence of the two enantiomeric forms of opposite handedness: the left- and right-handed gyroids. These two enantiomers appear with nonequal probabilities, implying that molecularly chiral constituents of the biological formation process presumably invoke a chiral symmetry break, resulting in a preferred enantiomeric form of the gyroid structure. Assuming validity of the formation model proposed by Ghiradella H (1989) J Morphol 202(1):69-88 and Saranathan V, et al. (2010) Proc Natl Acad Sci USA 107(26):11676-11681, where the two enantiomeric labyrinthine domains of the gyroid are connected to the extracellular and intra-SER spaces, our findings imply that the structural chirality of the single gyroid is, however, not caused by the molecular chirality of chitin. Furthermore, the wing scales are found to be highly textured, with a substantial fraction of domains exhibiting the <001> directions of the gyroid crystal aligned parallel to the scale surface normal. Both findings are needed to completely understand the photonic purpose of the single gyroid in gyroid-forming butterflies. More importantly, they show the level of control that morphogenesis exerts over secondary features of biological nanostructures, such as chirality or crystallographic texture, providing inspiration for biomimetic replication strategies for synthetic self-assembly mechanisms.


Assuntos
Borboletas/anatomia & histologia , Asas de Animais/anatomia & histologia , Animais , Microscopia Eletrônica de Transmissão e Varredura , Asas de Animais/ultraestrutura
7.
Artigo em Inglês | MEDLINE | ID: mdl-26066185

RESUMO

In a previous publication [R. Wittmann, M. Marechal, and K. Mecke, Europhys. Lett. 109, 26003 (2015)], we introduced fundamental mixed measure theory (FMMT) for mixtures of anisotropic hard bodies, which shows that earlier results with an empirical parameter are inaccurate. Now we provide a deeper insight into the background of this theory in integral geometry. We study the Frank elastic coefficients in the nematic phase of the hard spherocylinder fluid. The framework of FMMT provides us with the required direct correlation function without additional input of an equation of state. A series representation of the mixed measure gives rise to closed analytical formulas for the elastic constants that only depend on the density, order parameters, and the particle geometry, pointing out a significant advantage of our geometry-based approach compared to other density functionals. Our elastic coefficients are in good agreement with computer simulations and increase with the density and the nematic order parameter. We confirm earlier mean-field predictions in the limits of low orientational order and infinitely long rods.

8.
Artigo em Inglês | MEDLINE | ID: mdl-25974562

RESUMO

The spontaneous formation of heterogeneous patterns is a hallmark of many nonlinear systems, from biological tissue to evolutionary population dynamics. The standard model for pattern formation in general, and for Turing patterns in chemical reaction-diffusion systems in particular, are deterministic nonlinear partial differential equations where an unstable homogeneous solution gives way to a stable heterogeneous pattern. However, these models fail to fully explain the experimental observation of turbulent patterns with spatio-temporal disorder in chemical systems. Here we introduce a pattern-fluid model as a general concept where turbulence is interpreted as a weakly interacting ensemble obtained by random superposition of stationary solutions to the underlying reaction-diffusion system. The transition from turbulent to stationary patterns is then interpreted as a condensation phenomenon, where the nonlinearity forces one single mode to dominate the ensemble. This model leads to better reproduction of the experimental concentration profiles for the "stationary phases" and reproduces the turbulent chemical patterns observed by Q. Ouyang and H. L. Swinney [Chaos 1, 411 (1991)].

9.
J Chem Phys ; 141(19): 194903, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25416908

RESUMO

We study a model colloidal liquid crystal consisting of hard spherocylinders under the influence of an external aligning potential by Langevin dynamics simulation. The external field that rotates in a plane acts on the orientation of the individual particles and induces a variety of collective nonequilibrium states. We characterize these states by the time-resolved orientational distribution of the particles and explain their origin using the single particle behavior. By varying the external driving frequency and the packing fraction of the spherocylinders we construct the dynamical state diagram.

10.
Artigo em Inglês | MEDLINE | ID: mdl-25375462

RESUMO

Fundamental measure theory (FMT) for hard particles has great potential for predicting the phase behavior of colloidal and nanometric shapes. The modern versions of FMT are usually derived from the zero-dimensional limit, a system of at most one particle confined in a collection of cavities in the limit that all cavities shrink to the size of the particle. In Phys. Rev. E 85, 041150 (2012), a derivation from an approximated and resummed virial expansion was presented, whose result was not fully consistent with the FMT from the zero-dimensional limit. Here we improve on this derivation and obtain exactly the same FMT functional as was obtained earlier from the zero-dimensional limit. As a result, further improvements of FMT based on the virial expansion can now be formulated, some of which we suggest in the outlook.

11.
J Chem Phys ; 141(6): 064103, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25134547

RESUMO

The recent extension of Rosenfeld's fundamental measure theory to anisotropic hard particles predicts nematic order of rod-like particles. Our analytic study of different aligned shapes provides new insights into the structure of this density functional, which is basically founded on experience with hard spheres. We combine scaling arguments with dimensional crossover and motivate a modified expression, which enables an appropriate description of smectic layering. We calculate the nematic-smectic-A transition of monodisperse hard spherocylinders with and without orientational degrees of freedom and present the equation of state and phase diagram including these two liquid crystalline phases in good agreement with simulations. We also find improved results related to the isotropic-nematic interface. We discuss the quality of empirical corrections and the convergence towards an exact second virial coefficient, including higher order terms.

12.
J Chem Phys ; 140(10): 104703, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628192

RESUMO

A fluid constituted of hard spherocylinders is studied using a density functional theory for non-spherical hard particles, which can be written as a function of weighted densities. This is based on an extended deconvolution of the Mayer f-function for arbitrarily shaped convex hard bodies in tensorial weight functions, which depend each only on the shape and orientation of a single particle. In the course of an examination of the isotropic-nematic interface at coexistence the functional is applied to anisotropic and inhomogeneous problems for the first time. We find good qualitative agreement with other theoretical predictions and also with Monte Carlo simulations.

13.
Phys Rev Lett ; 111(13): 138301, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116819

RESUMO

Quasistatic simple shearing flow of random monodisperse soap froth is investigated by analyzing surface evolver simulations of spatially periodic foams. Elastic-plastic behavior is caused by irreversible topological rearrangements (T1s) that occur when Plateau's laws are violated; the first T1 determines the elastic limit and frequent T1 avalanches sustain the yield-stress plateau at large strains. The stress and shape anisotropy of individual cells is quantified by Q, a scalar derived from an interface tensor that gauges the cell's contribution to the global stress. During each T1 avalanche, the connected set of cells with decreasing Q, called the stress release domain, is networklike and nonlocal. Geometrically, the networklike nature of the stress release domains is corroborated through morphological analysis using the Euler characteristic. The stress release domain is distinctly different from the set of cells that change topology during a T1 avalanche. Our results highlight the connection between the unique rheological behavior of foams and the complex large-scale cooperative rearrangements of foam cells that accompany distinctly local topological transitions.


Assuntos
Células Espumosas/química , Modelos Químicos , Substâncias Viscoelásticas/química , Elasticidade , Modelos Moleculares , Plásticos/química , Resistência ao Cisalhamento
14.
J Chem Phys ; 138(4): 044501, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23387599

RESUMO

Local structure characterization with the bond-orientational order parameters q(4), q(6), ... introduced by Steinhardt et al. [Phys. Rev. B 28, 784 (1983)] has become a standard tool in condensed matter physics, with applications including glass, jamming, melting or crystallization transitions, and cluster formation. Here, we discuss two fundamental flaws in the definition of these parameters that significantly affect their interpretation for studies of disordered systems, and offer a remedy. First, the definition of the bond-orientational order parameters considers the geometrical arrangement of a set of nearest neighboring (NN) spheres, NN(p), around a given central particle p; we show that the choice of neighborhood definition can have a bigger influence on both the numerical values and qualitative trend of q(l) than a change of the physical parameters, such as packing fraction. Second, the discrete nature of neighborhood implies that NN(p) is not a continuous function of the particle coordinates; this discontinuity, inherited by q(l), leads to a lack of robustness of the q(l) as structure metrics. Both issues can be avoided by a morphometric approach leading to the robust Minkowski structure metrics q(l)'. These q(l)' are of a similar mathematical form as the conventional bond-orientational order parameters and are mathematically equivalent to the recently introduced Minkowski tensors [G. E. Schröder-Turk et al., Europhys. Lett. 90, 34001 (2010); S. Kapfer et al., Phys. Rev. E 85, 030301(R) (2012)].

15.
J R Soc Interface ; 10(78): 20120587, 2013 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22993246

RESUMO

Surface energies are commonly used to determine the adhesion forces between materials. However, the component of surface energy derived from long-range forces, such as van der Waals forces, depends on the material's structure below the outermost atomic layers. Previous theoretical results and indirect experimental evidence suggest that the van der Waals energies of subsurface layers will influence interfacial adhesion forces. We discovered that nanometre-scale differences in the oxide layer thickness of silicon wafers result in significant macroscale differences in the adhesion of isolated gecko setal arrays. Si/SiO(2) bilayer materials exhibited stronger adhesion when the SiO(2) layer is thin (approx. 2 nm). To further explore how layered materials influence adhesion, we functionalized similar substrates with an octadecyltrichlorosilane monolayer and again identified a significant influence of the SiO(2) layer thickness on adhesion. Our theoretical calculations describe how variation in the SiO(2) layer thickness produces differences in the van der Waals interaction potential, and these differences are reflected in the adhesion mechanics. Setal arrays used as tribological probes provide the first empirical evidence that the 'subsurface energy' of inhomogeneous materials influences the macroscopic surface forces.


Assuntos
Modelos Químicos , Nanoestruturas/química , Silanos/química , Dióxido de Silício/química , Silício/química , Nanoestruturas/ultraestrutura
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(6 Pt 1): 061401, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23005090

RESUMO

The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.


Assuntos
Coloides/química , Cristalização/métodos , Gases/química , Modelos Químicos , Modelos Moleculares , Reologia/métodos , Simulação por Computador , Módulo de Elasticidade , Movimento (Física)
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(3 Pt 1): 030301, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22587029

RESUMO

The local structure of disordered jammed packings of monodisperse spheres without friction, generated by the Lubachevsky-Stillinger algorithm, is studied for packing fractions above and below 64%. The structural similarity of the particle environments to fcc or hcp crystalline packings (local crystallinity) is quantified by order metrics based on rank-four Minkowski tensors. We find a critical packing fraction φ(c)≈0.649, distinctly higher than previously reported values for the contested random close packing limit. At φ(c), the probability of finding local crystalline configurations first becomes finite and, for larger packing fractions, increases by several orders of magnitude. This provides quantitative evidence of an abrupt onset of local crystallinity at φ(c). We demonstrate that the identification of local crystallinity by the frequently used local bond-orientational order metric q(6) produces false positives and thus conceals the abrupt onset of local crystallinity. Since the critical packing fraction is significantly above results from mean-field analysis of the mechanical contacts for frictionless spheres, it is suggested that dynamic arrest due to isostaticity and the alleged geometric phase transition in the Edwards framework may be disconnected phenomena.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Nanosferas/química , Nanosferas/ultraestrutura , Simulação por Computador , Modelos Estatísticos
18.
J Chem Phys ; 136(8): 081101, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22380024

RESUMO

Two-dimensional hard-particle systems are rather easy to simulate but surprisingly difficult to treat by theory. Despite their importance from both theoretical and experimental points of view, theoretical approaches are usually qualitative or at best semi-quantitative. Here, we present a density functional theory based on the ideas of fundamental measure theory for two-dimensional hard-disk mixtures, which allows for the first time an accurate description of the structure of the dense fluid and the equation of state for the solid phase within the framework of density functional theory. The properties of the solid phase are obtained by freely minimizing the functional.

19.
Phys Rev Lett ; 109(26): 264504, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368569

RESUMO

We study the permeability of quasi-two-dimensional porous structures of randomly placed overlapping monodisperse circular and elliptical grains. Measurements in microfluidic devices and lattice Boltzmann simulations demonstrate that the permeability is determined by the Euler characteristic of the conducting phase. We obtain an expression for the permeability that is independent of the percolation threshold and shows agreement with experimental and simulated data over a wide range of porosities. Our approach suggests that the permeability explicitly depends on the overlapping probability of grains rather than their shape.


Assuntos
Modelos Químicos , Porosidade , Dimetilpolisiloxanos/química , Pressão Hidrostática , Técnicas Analíticas Microfluídicas , Viscosidade
20.
Interface Focus ; 2(5): 623-33, 2012 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-24098847

RESUMO

A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...